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ABSTRACT

One of the active areas of computational aeroacoustics is the application of the

Kirchhoff formulas to the problems of the rotating machinery noise prediction.  The

original Kirchhoff formula was derived for a stationary surface.  In 1988, Farassat and

Myers derived a Kirchhoff Formula obtained originally by Morgans using modern

mathematics.  These authors gave a formula particularly useful for applications in

aeroacoustics.  This formula is for a surface moving at subsonic speed.  Later in 1995

these authors derived the Kirchhoff formula for a supersonically moving surface.  This

technical memorandum presents the viewgraphs of a day long workshop by the author

on the derivation of the Kirchhoff formulas.  All necessary background mathematics

such as differential geometry and multidimensional generalized function theory are

discussed in these viewgraphs.  Abstraction is kept at minimum level here.  These

viewgraphs are also suitable for understanding the derivation and obtaining the

solutions of the Ffowcs Williams-Hawkings equation.  In the first part of this

memorandum, some introductory remarks are made on generalized functions, the

derivation of the Kirchhoff formulas and the development and validation of Kirchhoff

codes.  Separate lists of references by Lyrintzis, Long, Strawn and their co-workers are

given in this memorandum.  This publication is aimed at graduate students, physicists

and engineers who are in need of the understanding and applications of the Kirchhoff

formulas in acoustics and electromagnetics.

INTRODUCTION

When Ffowcs Williams and Hawkings published their now famous paper on the noise

from moving surfaces in 1969 [1], they used a level of mathematical sophistication

unfamiliar to engineers who would later be the main users of this work.  Advanced

generalized function theory and differential geometry were employed by these authors

to derive the Ffowcs Williams-Hawkings (FW-H) equation and to obtain some important

qualitative results in this paper.  The subject of generalized functions is very abstract,

particularly as described in books written by mathematicians.  The level of differential
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geometry needed in acoustics is, however, basic and at the level essentially fully

developed by the end of the nineteenth century.  Both of these subjects are not

emphasized in engineering education.  It is possible to teach advanced generalized

function theory to engineers if some of the abstractions are left out initially.  One needs

to learn how to work with multidimensional Dirac delta functions and their derivatives

concentrated on moving surfaces, i.e. with support on moving surfaces.  This goal can

be achieved.

This technical memorandum is on the derivation of the Kirchhoff formulas for moving

surfaces.  The main part of this memorandum is the copies of the viewgraphs based on

lectures delivered by the author in the Workshop on Kirchhoff Formulas for Moving

Surfaces at NASA Langley Research Center on February 15, 1995 (see Appendix).

Attempt was made to present all the mathematical machinery needed in the derivation

of Kirchhoff formulas.  One of the publications of the author [2], NASA TP-3428 (May

1994), should also be consulted, if needed, to fill in some details.  The author and M. K.

Myers have published two papers on the derivation of Kirchhoff formula for moving

surfaces [3, 4] which should be easily comprehended by the readers reading the

material in the Appendix.

Below we briefly introduce the concept of Generalized Functions.  Then we discuss

the derivation of the subsonic and supersonic Kirchhoff formulas.   Finally we make

some remarks on the development and validation of codes based on the Kirchhoff

formulas.

GENERALIZED FUNCTIONS

Our main reference for this section is NASA TP-3428 [2].  To derive the Kirchhoff

formulas for moving surfaces, we need to learn how to manipulate multidimensional

Dirac delta functions and their derivatives.  Some knowledge of differential geometry

and tensor analysis is also essential.  In addition to [2], we give some other useful

references on generalized functions as well as on differential geometry and tensor

analysis in this paper [5-13].  To learn about generalized functions, we need a change of

paradigm in the way we look at ordinary functions.  Ordinary functions are locally

(Lebesgue) integrable functions, i.e., functions that have a finite integral over any finite

interval.  This change of paradigm is actually very familiar in mathematics.  For
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example, learning about fractions, negative numbers and complex numbers involves a

change of paradigm although we are not told that the change is occurring.

How do we think of an ordinary function f x( )?  We think of this function as a table of
ordered pairs x , f x( )( ).  A graph of a function is a plot of this table.  In generalized

function theory, we need to work with mathematical objects such as the Dirac delta
"function" δ x( )  with the sifting property

φ x( )δ x( )dx = φ 0( )− ∞
∞∫  (1)

It can be shown that no ordinary function has this property.  The Dirac delta function is
an example of a generalized function which is not an ordinary function.  To include δ x( )
and other such useful but strange objects in mathematics, we change our method of

thinking about functions as follows.  Suppose we take a space of functions D  which will

be called test function space.  We will be more specific about D  below.  Now given an
ordinary function f x( ), let us define the functional

F φ[ ] = f φ dx− ∞
∞∫ , φ ∈ D . (2)

If we take the space D  large enough, then there is a possibility that the table of
functional values F φ[ ] where φ ∈ D can identify f x( ).  This is actually true if we take

the space D  as the space of all c∞  functions which are identically zero beyond a

bounded interval, i.e., with compact support.  Therefore, the new paradigm of viewing a
function is:  think of the function f x( ) in terms of the table F φ[ ], φ ∈ D{ }.  We can

show that this table includes an uncountable number of elements.

Next, one shows that the functional F φ[ ] given by eq. (2) is linear and continuous for

an ordinary function f x( ) [2, 7-9].  We ask whether all continuous linear functionals are

produced by ordinary functions from eq. (2).  The answer is no.  For example, the

functional

δ φ[ ] = φ 0( ) φ ∈ D (3)
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is linear and continuous.  Therefore, the class of linear and continuous functionals is

larger than the class generated by ordinary functions through eq. (2).  Now, using our

new paradigm of thinking of a function as a table generated by the functional rule we

say:

a generalized function is identified by the table produced using a continuous linear

functional on space D .

By an abuse of terminology, we say that:

generalized functions are continuous linear functionals on space D .

By this definition the functional in eq. (3) is (represents) the Dirac delta function!  Note

that each continuous linear functional on space D  produces (represents, identifies,

gives) one generalized function.  Ordinary functions then become a subset of

generalized functions called regular generalized functions.  Other functions are called

singular generalized functions.

Next the operations on ordinary functions are extended to all generalized functions in

such a way that they are equivalent to the old definitions when applied to ordinary

functions.  To do this, one should write the operation in the language of functionals on
space D .  For example, the derivative of generalized function F φ[ ] is defined by

′F φ[ ] = − F ′φ[ ] (4)

In this way, many operations on ordinary functions can be extended to generalized

functions [2, 5-9].

Finally, we mention here that the space of generalized functions on D  is called ′D .
For any singular generalized function F φ[ ], we use eq. (2) with a symbolic function

f x( ) under the integral sign.  Here the integral does not represent an ordinary integral
but stands for the rule specified by F φ[ ].  For example, δ x( )  is a symbolic function

which is interpreted as follows.  Interpret δ x( )φ x( ) dx∫  as δ φ[ ] = φ 0( ) for all φ ∈ D,

i.e., in our new way of looking at functions as a table of functional values on space D
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δ x( ) ≡ φ 0( ), φ ∈ D{ } . (5)

Of utmost importance to us are delta functions and their derivatives with support on a
surface f = 0 .  Here   f = f

r
x( ) or   f = f

r
x , t( ).  We give the following two results [2]

assuming that ∇f = 1 on f = 0 , which is always possible:

  
φ r

x( )δ f( ) d
r
x∫ = φ dSf = 0∫ (6)

  
φ r

x( ) ′δ f( ) d
r
x∫ = − ∂φ

∂n
+ 2 H f φ





dSf = 0∫ (7)

where H f  is the local mean curvature of the surface f = 0  with dS  the element of the

surface area.  Also if the function   f
r
x( ) has a discontinuity across a surface   g

r
x( ) = 0

with the jump defined as

∆ f = f g = 0+( ) − f g = 0−( ), (8)

then

∇f = ∇f + ∆ f ∇g δ g( ) (9)

where ∇f  is the generalized gradient of   f
r
x( ) (see [2]).  Finally, we mention here that

the Green's function method is valid for finding solutions of differential equations with

discontinuities (weak solutions) provided that all derivatives in the differential equation

are viewed as generalized derivatives.

THE KIRCHHOFF FORMULAS FOR MOVING SURFACES

Assume that   f
r
x , t( ) = 0  is the moving Kirchhoff surface defined such that ∇f = 1

on this surface.  Let φ  satisfy the wave equation in the exterior Ω  of f = 0 , i.e.,

  
2φ = 0

r
x ∈ Ω (10)

Extend φ  to the entire unbounded space as follows, calling the extended function φ̃
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φ̃ = φ r

x , t( ) r
x ∈ Ω

0
r
x ∉ Ω





(11)

The governing equation for deriving the Kirchhoff formula for moving surfaces is then
found by applying the generalized wave operator (D'Alembertian) to φ̃  to get [2-4]:

2φ̃ = − φn + 1
c

Mnφt




 δ f( ) − 1

c

∂
∂t

Mnφδ f( )[ ]   −∇ ⋅ φ r
n δ f( )[ ] (12)

where Mn = vn / c  is the local normal Mach number on f = 0 , φn = ∂φ / ∂n  and
φt = ∂φ / ∂t .

We can now apply the Green's function method for the wave operator in the

unbounded space to eq. (11) to find the Kirchhoff formula for subsonically moving

surfaces [3].  The formula involves a Doppler singularity making it inappropriate for a

supersonically moving surface.  For supersonic surfaces, we derive the Kirchhoff

formula for an open surface (e.g. a panel).  The reason is that the Kirchhoff surface is

usually divided into panels and the formula is applied individually to each panel.  The

subsonic formula, applies to both open and closed surfaces.  However, the supersonic

formula differs for open and closed surfaces.  If the formula for an open surface is

known, obtaining the formula for a closed surface is trivial.

The governing equation for deriving the supersonic Kirchhoff formula for a panel is

2φ̃ = − φn + 1
c

Mnφn




 H f̃( )δ f( ) − 1

c

∂
∂t

Mn φ H f̃( ) δ f( )[ ]   −∇ ⋅ φ r
n H f̃( ) δ f( )[ ]

(13)

where H f̃( ) is the Heaviside function, f̃  is a function such that f̃ > 0  on the panel and

f = f̃ = 0  defines the edge of the panel.  The derivatives on the right side of eq. (13)

are brought inside to get three source terms involving H f̃( ) δ f( ), H f̃( ) ′δ f( )  and

δ f̃( ) δ f( )  [4].  The solutions of the wave equation with these kinds of sources are

given by the author [2].  The Kirchhoff formula for a supersonically moving surfaces

using the above method was derived and presented by Farassat and Myers [4].  It is a
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particularly simple and straightforward result and easy to apply.  This formula requires
the mean curvature HF  of the surface   Σ: F

r
y ;
r
x , t( ) = f

r
y , τ( )[ ]ret

.  We give the formula

for calculation of HF  in the Appendix in terms of the geometric and kinematic

parameters of the Kirchhoff surface f = 0 .

SOME REMARKS ON DEVELOPMENT AND VALIDATION OF KIRCHHOFF CODES

The development of a Kirchhoff code requires a good subroutine for retarded time

calculation if the Kirchhoff surface is rotating.  The possibility of multiple emission times

for a supersonic panel complicates retarded time calculation, particularly for two nearly

equal emission times.  If the Kirchhoff surface is not selected properly for the supersonic

formula, there is the possibility of a singularity [4].  This singularity can be avoided as

suggested by Farassat and Myers [4] or by using two different Kirchhoff surfaces for

different intervals of the observer time.  There is a fool-proof test of the Kirchhoff code

that must not be ignored by code developers.  Both of the Kirchhoff formula for moving
surfaces, as well as that for a stationary surface, are written such that φ̃ = 0  inside a

closed surface.  Therefore, to test a Kirchhoff code, use a point source inside the closed
surface and specify φ , φ̇  and φn  analytically on the Kirchhoff surface f = 0 .  If the

observer is now put anywhere inside f = 0  and φ̃ ≠ 0 , then there is a bug in the code.

One must rule out conceptual misunderstanding of the parameters in the formulation

first.  It is recommended that one should be familiar with the complete details of the

derivation of the Kirchhoff formulas to avoid conceptual misunderstanding.

There have been many derivations of the Kirchhoff formula for uniform rectilinear

motion of the Kirchhoff surface [14, 15].  These formulas do not have the generality of

Morgans formula derived and rewritten in a new form using modern mathematics by

Farassat and Myers [3].  Myers and Hausmann [16] were among the first to use the new

Kirchhoff formula in aeroacoustics.  Other researchers include Lyrintzis, Long, Strawn

and Di Francescantonio [17].  We give separately the publications of Lyrintzis, Long,

Strawn and their co-workers.

CONCLUDING REMARKS

The availability of high resolution aerodynamics and turbulence simulation make the

Kirchhoff formulas discussed here attractive in aeroacoustics.  The mathematics for

derivation of these formulas have been under development in the last decade and are
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well within the reach of modern engineers.  The final form of the formulas are simple

and relatively easy to apply.  The  present paper is written as a guide to understanding

the mathematical derivation as well as application of these results.

The viewgraphs in the Appendix give all the necessary mathematical background for

the derivation of the Kirchhoff formulas.  Note that the mathematical part of the

Appendix is also suitable for understanding the derivation and the solutions of the

Ffowcs Williams-Hawkings equation.  This publication is aimed at graduate students,

physicists and engineers who are in need of the understanding and applications of the

Kirchhoff formulas in acoustics and electromagnetism.
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Available Methods of Noise Prediction in Aeroacoustics

Today we have three methods available. These are:

1. The Acoustic Analogy introduced into aeroacoustics by Lighthill (1952).
Applications to rotating blades are based on Ffowcs Williams-Hawkings
(FW-H) equation (1969). It is the most developed method and is widely in
use in the aircraft industry.

2. The Kirchhoff Formula  based method. Originally suggested by Hawkings
in aeroacoustics (1979), this method is currently under development.
Availability of high resolution aerodynamics and powerful computers may
make this approach very popular in the future.

3. The CFD Based CAA (Computational Aeroacoustics). This method is
under development and is the least mature of the three methods. It may be
appropriate for some problems. Computational Techniques developed here
will also help the above two methods.
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Classical Kirchhoff Formula (1882)

ret: retarded time, ,

• Gives  in terms of values ofφ,  andφn on the Kirchhoff surface. It isGreen’s
Identity for the wave equation. Compare with the
following identity for Laplace equation:

• We derive both above results by the same method
using generalized function theory.

4πφ x t,( )
φn– c 1– φ̇ θcos+[ ]ret

r
--------------------------------------------------

f =0
∫ dS=

φ θcos[ ]ret

r 2
-------------------------

f =0
∫ dS+

φn
∂φ
∂n
------= r x y–=

φ φ̇

4πφ x( )
φn

r
----- Sd

f =0
∫– φ θcos

r 2
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f =0
∫ dS+=

f = 0 stationary:
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   2φ = 0
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Classical Kirchhoff Formula (Cont’d)

• Derived in 1882 by G. Kirchhoff

• See Classical Derivation by D. S. Jones “The Theory of Electromagnetism,”
Pergamon Press, 1964, sec. 1.17, p. 40. Also see M. Born and E. Wolf
“Principles of Optics,” Pergamon Press, 1970, sec. 8.3, p. 375 (good
applications here).

• Applications in optics, electromagnetism and acoustics are very extensive.
Until recently the classical Kirchhoff formula has been used either as
approximation or for qualitative understanding of fields governed by the wave
equation. The availability of high speed digital computers has changed this
picture. Simulation of the wave field is possible and rewarding! Extension to
moving surfaces has opened new applications.

• See also A. D. Pierce “Acoustics,” Acoust. Soc. Am. 1989, p. 180.
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   2p' = 0 CFD calculations
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surface in
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Kirchhoff data p', p', p'n
obtained from CFD on
Kirchhoff surface

•

VF

Acoustic
waves
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Why are Kirchhoff Formulas Important in Acoustics

• Accurate prediction of the noise of
helicopter rotors, propellers and ducted
fans, particularly at design stage, is
needed to reduce the passenger and public
annoyance and to meet noise standards.

• Low noise aircraft and propulsion systems
sell better in the international market.
Therefore, noise prediction tools to meet
U.S. aircraft and engine industry needs
must be developed.

• Kirchhoff formulas for moving surfaces
coupled to advanced CFD codes supply
an efficient and powerful tool for noise
prediction. See box above.
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What is this Workshop About?

• Ourprimary purpose in this workshop is the derivation of two Kirchhoff
formulas for subsonic and supersonic surfaces.

• When working with inhomogeneous wave equation for moving sources using
classical methods, we notice that the algebraic manipulations quickly become
complicated. We lose track of cancellations and simplifications. We need
special tools from mathematics which give us simple and direct method of
derivation.

• Thesecondary purpose of this workshop is to give all the necessary tools from
generalized function (GF) theory, P.D.E.’s and differential geometry.
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Method of Deriving Kirchhoff Formulas

• We reduce the derivation of the three Kirchhoff formulas (stationary, subsonic
and supersonically moving surface) here to the solution of wave equation

 whereQ is a generalized function (such asqδ(f)). This is the most
direct approach to deriving Kirchhoff fomulas. One must, therefore, learn some
generalized function theory. The source distributions are on moving surfaces
and invariably the geometry of these surfaces enters the derivation. Without the
knowledge of differential geometry of surfaces, we cannot identify surface
curvature terms and other geometric quantities resulting in a large number of
meaningless terms in the Kirchhoff formula. A formula in this form is not very
useful in applications.

• Note: In applications, the Kirchhoff surface is divided into panels and the
contributions of individual panels are added together. The stationary and
subsonic Kirchhoff formulas remain unchanged for open or closed surfaces.
We derive the supersonic formula for an open surface only. The extension to a
closed surface is trivial.

φ2 Q=
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Elements of Generalized Function Theory
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Models of Functions

Old (Conventional) Model: We think of a
function as a table of ordered pairs (x, f(x))
where for eachx, f(x) is unique. This table
can be graphed as shown and usually has an
uncountable number of ordered pairs.

New Model: We think of a functionf by its
action (functional values) on a given space of
ordinary functions calledtest function space.
This action for ordinary functions is defined by

. The functionf is now

defined (identified, thought of) by the new table
{ F[φ], φ is in the test function space}. This view of
ordinary functions now allows us to incorporate
δ(x) into mathematics rigorously.

F φ[ ] f x( )φ x( ) xd∫=

(xo, f(xo))

f(x)

xxo

F[φ] = ∫ f(x) φ(x) dx

Ordinary
functions

f(x)

Test
functions

φ(x)
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A Familiar Example of Thinking About Functions by
New Model

Consider space of periodic functions with period 2π. Take thetest function space
to be the space formed by functions , . Letf be
periodic with period 2π. The Fourier coefficients off can be viewed as
functionals on test function space by the relation

From the theory of Fourier analysis, we know that the following table of Fourier
coefficients (i.e.,functional values of f on test function space) contains the same
information asf (x):

Note that if , whereg (x) is another periodic function with period 2π,
then

for some n, i.e., the new table uniquely defines functions.

φn exp inx( )= n 0 1± 2± …, , ,=

F φn[ ] 1
2π
------ f x( )einx

xd
0

2π
∫=

F φn[ ] n, 0 1± 2± …, , ,={ }
f x( ) g x( )≠

F φn[ ] G φn[ ]≠ 1
2π
------ g x( )einx

xd
0

2π
∫=
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Elementary Generalized Function Theory

The main reason to develop the generalized function theory is to include
mathematical objects such as the Dirac delta “function”δ(x). This function has
the sifting property

To include these objects in mathematics, we need to change our thinking about
functions. The reason we must change our thinking about functions is that no
ordinary function can have the sifting property. We must therefore enlarge the
space of functions by a process familiar in mathematics: define (look at, view)
functions in a way which includes all ordinary functions as well as objects like
the Dirac delta function. This isa change of paradigm familiar to us when we
learned fractions, negative numbers and complex numbers.

φ x( )δ x( ) xd
a–

a
∫ φ 0( )=
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Definition of Generalized Functions

• A functional on a space of functionsΩ is a mapping (a rule) ofΩ into scalars
(real or complex numbers).

Examples: TakeΩ as space of differentiable functions. The following are
functionals onΩ, φε Ω

i) ii)

iii) iv)

• In the theory, the functionals act on various test function spaces depending on
the problem. We define generalized functions on the following test function
space:

Space D of Test Functions: infinitely differentiable functions with bounded
support.

• Thesupport of a functionφ is the closure of the set on which . We use
suppφ for support ofφ.

F φ[ ] φ′ 0( ) 2φ 1( )+= F φ[ ] φ2 x( ) xd
0

1
∫=

F φ[ ] φ 0( )[ ]sin= F φ[ ] 2φ 1( ) φ x( ) xd
1–

1
∫+=

φ 0≠
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Definition of Generalized Functions (Cont’d)

• Example of functions in D:

i) Let

ii) Let g(x) be any continuous function, then

, where [b, c] is a finite interval, belongs

to D. We can show that supp .

• Example (ii), above, shows that space D is populated with an uncountably
infinite number of functions. This means that the table of functional values on
D in our new model of functions has an uncountably infinite number of
members.

φ x a;( ) exp
a2

x2 a2–
----------------- x a<

0 x a≥





=

φ x a;( )εD⇒

ψ x( ) g y( )φ x y a;–( ) yd
b

c
∫=

ψ x( ) b a– c a+,[ ]=

-a a
x

e-1

φ (x;a)



14 of 95, September 1996

F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division

NASA Langley Research Center
Hampton, Virginia

Definition of Generalized Functions (Cont’d)

• By anordinary function we mean a locally (Lebesgue) integrable function.

• A Reminder: In our new model of thinking about functions, we identify an
ordinary functionf(x) by table .

The functional  islinear andcontinuous. We define linearity and
continuity below.

• A functional on D islinear if  for all
and  in D

• Examples: φεD

i)  is linear

ii) , f an ordinary function, is linear

iii)  is nonlinear

F φ[ ] fφ xd∫ φεD,={ }

F φ[ ] fφ xd∫=

F αφ1 βφ2+[ ] αF φ1[ ] βF φ2[ ]+= φ1
φ2

F φ[ ] φ 0( )=

F φ[ ] 2φ′ 1( ) fφ xd∫–=

F φ[ ] φ2 0( )=
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Definition of Generalized Functions (Cont’d)

• A sequence of functions  in D converges to zero in D, written as ,
if  and all its derivatives converge uniformly to zero and  for all
n whereI is a fixed bounded interval.

• A functional on D iscontinuous if  if .

• This definition seems very strange but gives generalized functions some of
their nicest properties.

Examples:

i) Let , whereφ(x; a) was defined earlier,

ii)  because suppφn = [−na, na] becomes

unbounded as

iii) Linear functionals in the examples on previous vugraph are continuous.

iv) , φεD, is continuous (It is also linear.)

φn{ } φn 0D→
φn suppφn I⊂

F φn[ ] 0→ φn 0D→

φn
1
n
---φ x a;( )= φn 0D→⇒

φn
1
n
---φ x

a
n
---; 

  φn 0D
/→⇒=

n ∞→

δ φ[ ] φ 0( )=
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Definition of Generalized Functions (Cont’d)

• Any ordinary functionf defines a continuous linear functional on D by the
relation , φ εD. But ordinary functions do not exhaust all
continuous linear functionals on D.

• Definition of Generalized Functions: A continuous linear functional on space
D defines ageneralized function. The space of all generalized functions is
denoted

Examples: φεD

i) δ[φ] = φ(0) defines a generalized function. We can show that there is no
ordinary functionf(x) such that . This means that

 is larger than the space of ordinary functions.

ii) , f ordinary function, defines a generalized
function

F φ[ ] fφ xd∫=

D′

f x( )φ x( ) xd∫ φ 0( )=
D′

G φ[ ] 2φ′ 1( ) 3 fφ xd∫+=
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Definition of Generalized Functions (Cont’d)

• It is inconvenient to work with functional notation in mathematical
manipulations. For this reason, we introduce the notation of symbolic
functions for those generalized functions which are not ordinary functions.
Ordinary functions are calledregular generalized functions. Other generalized
functions are calledsingular generalized functions. For singular generalized
functionF[φ], we define the symbolic functionf(x) so that

 for φεD. It is important to recognize that the integral on

the left is just a symbol standing forF[φ] and one should not treat it as an
ordinary integral.

This is the picture of the space of
generalized functions  we
should have in mind.

f x( )φ x( ) xd∫ F φ[ ]≡

D′
D'

Singular gen. fns.

φ ε D

G[φ] = ∫g(x) φ(x) dx
g(x) symbolic fn.

Real or comp.
numbersG[φ]F[φ]

F[φ] = ∫fφdx
f ord. fn.

Reg.
gen. fns.

f(x)
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Some Operations on Generalized Functions

Note: All test functions are in space D (c∞ fns with compact supp.)

i) Equality of two generalized functions on an open intervalI:
on I if for all φ in D such that , we have
(symbolically ).

Example:  on (0,∞) since  for allφ such that
. This means that a singular generalized function can be

equal to an ordinary function (here ) on an open interval.

ii) Multiplication of a generalized functionsF[φ] with a c∞ functiona(x):
 (left side is defined by right side).

Example:  or symbolically
, an important result!

Note: Multiplication of two singular generalized functions or a regular and a
singular generalized functionsmay not be defined.

F φ[ ] G φ[ ]=
suppφ I⊂ F φ[ ] G φ[ ]=

f x( ) g x( )=

δ x( ) 0= δ φ[ ] φ 0( ) 0= =
suppφ 0 ∞,( )⊂

f 0=

aF φ[ ] F aφ[ ]=

aδ φ[ ] δ aφ[ ] a 0( )φ 0( )= =
a x( )δ x( ) a 0( )δ x( )=
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Some Operations on Generalized Functions (Cont’d)

iii) Addition of generalized functions:  or
symbolically

iv) Shift Operation:  where

Example:  or symbolically

Note: Generalized functions are not defined at a point but on open intervals.
In practice, this does not cause problems.

• We can define other operations such adilation:

, andFourier transform(F.T.)

,  whereφ now belongs to space of rapidly
decreasing test functionsS. For our purpose, the most important operation on
generalized functions isdifferentiation.

F G+( ) φ[ ] F φ[ ] G φ[ ]+=
f g+( ) x( ) f x( ) g x( )+=

EhF φ[ ] F E h– φ[ ]= E h– φ φ x h–( )=

Ehδ φ[ ] δ E h– φ[ ] φ h–( )= =

Ehδ x( )φ x( ) xd∫ δ x h+( )φ x( ) xd∫ φ h–( )= =

δ αx( )φ x( ) xd∫ 1
α
------φ 0( ) δ αx( )⇒ 1

α
------δ x( )= =

F̂ φ[ ] F φ̂[ ]= φ̂ F.T. φ( )=
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Differentiation of Generalized Functions
All test functions are in D.

• f(x) ordinary function, differentiable, , we must identify

with . But  since .

Therefore, we use the relation:

as the definition of derivative of any generalized functionF[φ]. Similarly

, i.e., generalized functions have derivatives of all
orders.

Examples:

i)  or

ii)  or

Note: If an ordinary function is differentiable on real line, then .
However, generalized derivative of an ordinary functioncan be a singular
generalized function.

F φ[ ] fφ xd∫= F′ φ[ ]

f ′φ xd∫ F′ φ[ ] f ′φ xd∫≡ fφ′ xd∫– F φ′[ ]–= = φ′εD

F′ φ[ ] F φ′[ ]–=

F n( ) φ[ ] 1–( )nF φ n( )[ ]=

δ′ φ[ ] δ φ′[ ]– φ′ 0( )–= = δ′ x( )φ x( ) xd∫ φ′ 0( )–=

δ′′ φ[ ] 1–( )2δ φ′′[ ] φ′′ 0( )= = δ′′ x( )φ x( ) xd∫ φ′′ 0( )=

f gen.′ f ′=
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Differentiation of Generalized Functions (Cont’d)

Notation: For ordinary (regular G.F.’s) functions, we use  or  for
 to distinguish generalized from ordinary derivative.

Example: Generalized derivative of an ordinary
function with a jump.

or symbolically

f ′ x( ) d f
dx
------

f gen.′

F φ[ ] fφ xd∫ φεD,=

F′ φ[ ] F φ′[ ]– f φ′ xd∫–= =

+




f φ′ xd
x0+

∞
∫∞–

x0-∫



– f ′φ xd∫ ∆f φ x0( )+==

f ′ x( ) f ′ x( ) ∆f δ x x0–( )+=

Jump: ∆f = f(xo+) – f(xo-)

xo

f(x)

x
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Differentiation of Generalized Functions (Cont’d)

Example: Generalized derivative of Heaviside function

.

 since  on .

• Note: Even at this level of exposition, we can do a lot we could not do by using
ordinary functions. We can discuss Green’s function of an O.D.E., for example.

h x( ) 1 x 0>
0 x 0<




=

h′ x( ) δ x( )= h′ x( ) 0= 0 ∞,( ) ∞– 0,( )∪
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Some Important Results of Generalized Function
Theory

• Structure Theorem of : Generalized functions in  are generalized
derivatives of finite order of continuous functions.

• Sequences of Generalized Functions: A sequence {Fn[φ]} of generalized
functions isconvergent if for all φεD, the sequence of numbers {Fn[φ]} is
convergent.

• Theorem: The space  is complete.

This theorem implies that a convergent sequence of generalized functions gives
(i.e., converges to) a generalized function. This theorem is the basis of the
sequential approach to generalized function theory (see books by Lighthill and
Jones).

D′ D′

D′
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Some Important Results of Generalized Function
Theory (Cont’d)

• Exchange of Limit Processes: We can exchange limit processes when we are
dealing with generalized functions. This result is very important in
applications.

Examples:

; ; ;

; .

Note: In the rule of exchanging the order of differentiation and integration, we
assume thatΩ is independent of .

∂2 f
∂xi∂xj
---------------- ∂2 f

∂xj∂xi
----------------= …

Ω
∫

i
∑ …

i
∑

Ω
∫=

∂
∂xi
------- …

Ω
∫ ∂

∂xi
-------…

Ω
∫=

…
m
∑

n ∞→
lim …

n ∞→
lim

m
∑=

d
dx
------ …

m ∞→
lim

d
dx
------…

m ∞→
lim=

x
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Green’s Function of a 2nd Order Linear O.D.E.

Given

Assume there is a functiong(x, y) (Green’s function) such that

(1)

We are interested in solutions where  and u is twice differentiable so that
 and  and, therefore, . Here  stands for the

differential equation where ordinary derivatives are replaced by generalized
derivatives. From eq. (1), we have

lu f x( )= xε 0 1,[ ] Linear 2nd order O.D.E.

BC1 u[ ] a1u 0( ) b1u′ 0( ) c1u 1( ) d1u′ 1( )+ + + 0= =

BC2 u[ ] a2u 0( ) b2u′ 0( ) c2u 1( ) d2u′ 1( )+ + + 0= = 



Linear HomogeneousBCs






u x( ) f y( )g x y,( ) yd
0

1
∫=

uεc1

u′′ u′′= u′ u′= lu lu= lu

lu x( ) l x f y( )g x y,( ) yd
0

1
∫ f y( )l xg x y,( ) y (exchange of limit process)d

0

1
∫= =

f x( ) by the O.D.E.( )=



26 of 95, September 1996

F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division

NASA Langley Research Center
Hampton, Virginia

Green’s Function of a 2nd Order Linear O.D.E.
(Cont’d)

Therefore

We will interpret this equation later. Note that since the boundary conditions are

linear:

A similar result also holds for .

, ,

i.e.,g(x, y) in variablex satisfies bothBC’s.

l xg x y,( ) δ x y–( )=

BC1 u[ ] BC1 x, f y( )g x y,( ) yd
0

1
∫=

f y( )BC1 x, g x y,( )[ ] yd
0

1
∫ =  0=

BC2 u[ ]

B∴ C1 x, g x y,( )[ ] 0= BC2 x, g x y,( )[ ] 0=
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x = y
x

10

g1
g2

Green’s Function of a 2nd Order Linear O.D.E.
(Cont’d)

• What is the interpretation of ?

Let , theng(x, y) and  must have some

kind of discontinuity at .

Let

l xg x y,( ) δ x y–( )=

l A x( ) d2

dx2
--------- B x( ) d

dx
------ C x( )+ +=

∂g
∂x
------ x y,( )

x y=

g x y,( )
g1 x y,( ) x y<

g2 x y,( ) x y>






=
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Green’s Function of a 2nd Order Linear O.D.E.
(Cont’d)

Then

This means , g(x, y) is continuous at  and

 has a jump equal to  at .

∂g
∂x
------ ∂g

∂x
------ ∆gδ x y–( )+=

∂2g

∂x2
--------- ∂2g

∂x2
--------- ∆ ∂g

∂x
------ 

 δ x y–( ) ∆gδ′ x y–( )+ +=

l xg x y,( ) l xg x y,( ) A y( )∆ ∂g
∂x
------ 

  B y( )∆g+ δ x y–( ) A x( )∆gδ′ x y–( )+ +=

δ x y–( ) (by the result of previous page)=

∆g∴ 0 at x y and∆ ∂g
∂x
------ 

  1
A y( )
----------- at x y= = = =

l xg1 x y,( ) l xg2 x y,( ) 0= = x y=

∂g
∂x
------ 1 A y( )⁄ x y=
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Generalized Functions in Multidimensions

• Space D in Multidimensions: This space is formed byc∞ functions with
bounded support. Define

This belongs to D inn dimensions. Given any continuous function  and
any bounded regionΩ

• As in the case of space D in one dimension, the space D inn dimension is
populated by an uncountably infinite number of functions.

φ x a;( ) exp
a2

a2 x 2–
-------------------- x a<

0 x a≥





x, xi
2

i 1=

n

∑
1 2⁄

= =

g x( )

ψ x( ) g y( )φ x y a;–( ) yd
Ω
∫=

ψ x( ) εD⇒
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Generalized Functions in Multidimensions (Cont’d)

• Generalized functions in n dimensions are continuous linear functionals onn
dimensional test function space D.

• Examples:

i)

ii)

• From our point of view, the most important generalized functions are delta
functions whose supports are on open or closed surfaces, e.g.,δ(f). We need to
interpret integrals of the form

and .

δ x( )φ x( ) xd∫ φ 0( )=

∂
∂xi
-------δ x( ) φ x( ) xd∫ ∂φ

∂xi
------- 0( )–=

I 1 δ f( )φ x( ) xd∫= I 2 δ′ f( )φ x( ) xd∫=
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  f

f(x) = 0

u3
u2

u1

∆

How Doesδ( f) Appear in Applications?
Assume  is discontinuous across the surface

 with the jump

Set up coordinate system  on  and extend these coordinates to the
vicinity of  along local normals. Take  as third local variable. Then
(assumingg is continuous in )

Since , we have .

Similarly

g x( )
f x( ) 0=

∆g g f =  0+( ) g f( =  0 )––=

u1 u2,( ) f 0=
f 0= u3 f=

u1 u2,
∂g

∂ui
-------- ∂g

∂ui
--------= i 1 2,= and ∂g

∂u3
--------- ∂g

∂u3
--------- ∆g δ u3( )+=

∂g
∂xj
--------

∂g

∂ui
-------- ∂ui

∂xj
-------- ∂g

∂ui
-------- ∂ui

∂xj
-------- ∆g

∂u3

∂xj
---------δ u3( )+ ∂g

∂xj
-------- ∆g

∂u3

∂xj
---------δ u3( )+= = =

u3 f= ∇g ∇g ∆g∇f δ f( )+=

∇ g⋅ ∇ g⋅ ∆g ∇f δ f( )⋅+=

∇ g× ∇ g ∆g ∇f δ f( )×+×=
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How Doesδ(f) Appear in Applications? (Cont’d)

• In our work the discontinuities in functions are either real (e.g., shock waves)
or artificial (e.g., across blade surface in derivation of FW-H eq.).

• Example: Shock surface sources in Lighthill jet noise theory. Let the shock
surfaces be defined by . We can show that Lighthill’s equation is
valid in presence of shocks if we interpret the derivatives of the source term as
generalized derivatives:

f x t,( ) 0=

 

p′2
∂2Tij

∂xi∂xj
----------------=

∂
∂xi
-------

∂Tij

∂xj
---------- ∆Tij

∂f
∂xj
--------δ f( )+=

∂2Tij

∂xi∂xj
---------------- ∆

∂Tij

∂xj
----------

 
 
  ∂f

∂xi
-------δ f( ) ∂

∂xi
------- ∆Tij

∂f
∂xj
--------δ f( )+ +=

Turbulence Shock Surface Sources
Source
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Elements of Differential Geometry
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Some Results From Differential Geometry

• Introduce the local surface variables  on a

surface. Define local tangent vectors

and . In general, these are

not of unit length. Let ,the first

fundamental form is

, . This givesthe

element of length of a curve on the surface. In this relation ’s are known as

coefficients of the first fundamental form. We define  asthe determinant of

coeff. of 1st fundamental form .

u1 u2,( )
r1 ∂r ∂u1⁄=

r2 ∂r ∂u2⁄=

gij r i r j⋅=

dl2 g11 du1( )2 2g12du1du2 g22 du2( )2+ += g12 g21=

gij

g 2( )

g 2( )
g11 g12

g21 g22

g11g22 g12
2–= =

Surface

u1

u2
n (u1, u2)

unit
normalr2

r1

r (u1, u2)
x2

x3

0
x1
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Some Results From Differential Geometry (Cont’d)

• We can show thatthe element of surface area dS is .

Since , we have .

Note: We use summation convention on repeated index below.

• Define  as elements of the inverse of the matrix ,

i.e., .

We have where  is the Kronecker delta.

dS r1 r2× du1du2=

g 2( ) r1 r2× 2= dS g2( )du1du2=

gij G
g11 g12

g21 g22

=

G 1– g11 g12

g21 g22
g11⇒

g22
g 2( )
---------- g22,

g11
g 2( )
---------- g12, g21

g12
g 2( )
----------–= = = = =

gij gjk δk
i= δk

i
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Some Results From Differential Geometry (Cont’d)

• Define where .The second fundamental form

is . Note that  and

 is the local unit normal. In this relation ’s are known ascoefficients of 2nd

fundamental form.

•

The quantityb is the determinant of coefficient of 2nd fundamental form.

bij r ij n⋅= r ij ∂2r ∂ui∂uj⁄=

Π b11 du1( )2 2b12du1du2 b22 du2( )2+ += b12 b21=

n bij

b
b11 b12

b21 b22

b11b22 b12
2–= =
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Some Results From Differential Geometry (Cont’d)

• What isthe geometrical meaning ofΠ?

• Another relation for : ,

• Weingarten Formula: where  . We are using

summation convention here.

d n dr⋅=

n r1du1 r2du2 1
2
--- r[ 11 du1( )2+ +⋅=

2r12du1du2 r22 du2( )2] …+ ++

1
2
---Π O dui( )3 Π 2d≈∴+=

bij bij r i– nj⋅= nj ∂n ∂uj⁄=

ni bi
j– r j⋅= bi

j g jkbki=

dr

n

d = n • dr
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Some Results From Differential Geometry (Cont’d)

• Gauss Formula: where  is Christoffel symbol of 2nd

kind.

• Christoffel Symbols: First kind , second kind

and

and

Note: Christoffel symbols are not tensors while , , ,  are.

• A useful result:

r ij Γij
k r k bij n+= Γij

k

Γijk Γij
k

Γijk
1
2
---

∂gjk

∂ui
-----------

∂gki

∂uj
----------

∂gij

∂uk
---------–+= Γijk Γ jik=

Γij
k gklΓijl= Γij

l Γ ji
l=

gij gij bij b j
i

∂ g 2( )
∂ui

----------------- Γik
k g 2( )=
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t

s
r(s) N

x2

x1

x3

Curve

Some Results From Differential Geometry (Cont’d)

• Gauss Formula:

. See theorema egregium of Gauss. A very significant result!

• Let us parametrize a curve in space by length parameters.

The unit tangent  to the curve is and the local

curvaturek is given by

.

Note that  always points to the center of curvature, i.e.  is parallel to .

b ∂12
2 g12

1
2
--- ∂22

2 g11 ∂11
2 g22+( ) Γ11

i Γ22
j Γ12

i Γ12
j–( )gij––=

∂ij
2 ∂2 ∂ui∂uj⁄=

t t
dr
ds
-----=

kN
dt
ds
----- k k, 0 k∴> dt

ds
----- d2r

ds2
--------= = = =

N N dt ds⁄
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kg n

kn
k

Curve

θ

Some Results From Differential Geometry (Cont’d)

• For a curve on a surface  has components along tangent and normal
to the surface.

: Geodesic : Normal
curvature vector curvature vector

Geodesic curvature is anintrinsic while normal curvature is anextrinsic
quantity.

d2r ds2⁄

dr
ds
----- r i

dui

ds
--------=

k
d2r

ds2
-------- = r ij

dui

ds
-------- duj

ds
-------- r i

d2ui

ds2
-----------+=

d2uk

ds2
------------ Γij

k dui

ds
-------- duj

ds
--------+ 

 rk bij
dui

ds
-------- duj

ds
-------- n+=

 
k

kn
θcos

------------=

Meusnier Theoremkg kn
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n
Plane

kn < 0

α
2

1

1 and 2 principal
directions

Some Results From Differential Geometry (Cont’d)

• The normal curvature is a signed quantity. If ,

then the center of curvature of the curve obtained by
intersection of a plane containing  and the surface,

is on the side  points to. Note that  the

components ofunit tangent to this curve and

. Note that .

• There are two directions at a point on a surface
orthogonal to each other where  achieves its

maximum and minimum values. These are known
as theprincipal directions with principal
curvatures  and  (normal curvatures).

kn 0>

n

n ti
dui

ds
--------=

kn bij t
i t j= gij t

i t j 1=

kn

k1 k2 Euler′s Formula

kn α( ) k1cos2α k2sin2α+=
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α 1

2

(1,2) Principal
directions

Some Results From Differential Geometry (Cont’d)

• Mean Curvature: ,

• Gaussian Curvature:

• Theorema Egregium of Gauss: The Gaussian curvatureK depends ongij  and
their first and second derivatives.

• We have , and b was given in terms ofgij  and their first and second

derivatives. Thus the Gaussian curvature is anintrinsic quantity.

• ,

• By Euler’s formula

H
1
2
--- k1 k2+( ) 1

2
---bi

i 1
2
--- b1

1 b2
2+( )= = = bj

i gikbkj=

K k1k2 b1
1b2

2 b2
1b1

2–= =

K
b
g
---=

n1 n2× K r1 r2×= r i
∂r

∂ui
--------= ni

∂n

∂ui
--------=

H
1
2
--- kn α( ) kn α π

2
---+ 

 +=
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n

a
u2

u2

u1

u1

S'
S

Some Results From Differential Geometry (Cont’d)
• Theprincipal directions can be found from solving the quadratic equation:

• ,  if and only if the two fundamental forms are proportional.

• Let us displace surfaceS given by  by
distancea = const. along local normal to get

given by .
If we associate prime quantities to , we can
show the following

du2( )2 du1du2– du1( )2

b11 b12 b22

g11 g12 g22

0=

Remember du1 du2,( )
defines the direction

r1du1 r2du2.+

H2 K≥ H2 K=

r u1 u2,( )
S′

R u1 u2 a, ,( ) r u1 u2,( ) an u1 u2,( )+=
S′

′g 2( ) 1 2Ha Ka2+–( )2g 2( )=

′g 2( ) 1 2Ha Ka2+–( ) g 2( )=
H′ H Ka–

1 2Ha Ka2+–
-------------------------------------= K′ K

1 2Ha Ka2+–
-------------------------------------=
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n
(u1, u2, u3)

S
u2

u1
u3

(u1, u2, 0)

Some Results From Differential Geometry (Cont’d)

• If we now define  be the distance along
local normal to a surfaceS, then the three
dimensional space nearS can be parametrized by

 and , the determinant of coefficient

of first fundamental formin 3D is given by

From this we find

HereH is the local mean curvature of the surfaceS

u3 a=

u1 u2 u3, ,( ) g 3( )

′g 3( ) g 2( ) u1 u2 u3, ,( ) 1 2Hu3 K u3( )2+–[ ]2g2 u1 u2,( )= =

′ ′∂ g 2( )
∂u3

-----------------
 
 
 

u3 0=

∂ g 2( )
∂n

-----------------
 
 
 

S
2H g 2( )–= =
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Some Results From Differential Geometry (Cont’d)

• Let us now have a vector field  in the vicinity

of surfaceS: f = 0. We want to write  in a
new way. First parametrize the 3D space in the

vicinity of S as shown. Then, let  be the

contravariant components of . We have

 .  Now using the result of previous page that

, we have, using

Q

∇ Q⋅

Qi

Q

∇ Q⋅ 1

g 3( )
-------------- ∂

∂ui
-------- g 3( )Q

i[ ]=

′g 3( ) g 2( ) u1 u2 u3, ,( )= α 1 2,=

′
′

′

′
∇ Q⋅( )S

1

g 2( )
-------------- ∂

∂uα
---------- g 2( )Q

α[ ] ∂Q3

∂u3
----------

Q3

g 2( )
--------------

∂ g 2( )
∂u3

-----------------+ +
S

=

n

(u1, u2, u3)

S:  f = 0

u2

u1
u3

(u1, u2, 0)
u3 distance
from S
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Some Results From Differential Geometry (Cont’d)

Since : A very useful result

 surface component of  onS.

 is thesurface divergence of :

Example:

where  is the restriction ofp to f = 0 (explained later), andHf is the mean

curvature off = 0. Note that . This identity is used in deriving the
supersonic Kirchhoff formula.

Q3 Qn= ∇ Q⋅( )S ∇2 QT
∂Qn

∂n
---------- 2HQn–+⋅=

QT Q Qn–= Q

∇2 QT⋅ QT Q1r1 Q2r2+=

∇2 QT⋅ 1

g 2( )
-------------- ∂

∂uα
---------- g 2( )Q

α[ ]= α 1 2,=

∇ pnδ f( )[ ]⋅ ∂
∂n
------ p

˜
δ f( )[ ] 2H f δ f( )– p

˜
δ′ f( ) 2H f δ f( )–= =

p
˜ ∂ p

˜
∂n⁄ 0=



47 of 95, September 1996

F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division

NASA Langley Research Center
Hampton, Virginia

Integration of Delta Functions
and

Solution of Wave Equation
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The Integration of δ(f) and δ′(f)

We assume  is defined such that  on the surfacef = 0. This can
always be done. This meansdf = dn= du3

• Parametrize the space in vicinity of surfacef = 0 by variables (u1, u2, u3) as
shown. Then

f x( ) ∇f 1=

I 1 φ x( )δ f( ) xd∫=

xd g 3( )du1du2du3=

g 2( )′ u1 u2 u3, ,( ) du1du2du3=

I 1 φ x( )δ u3( ) g 2( )′ du1du2du3∫ φ x( )[ ]
u3 0=

g 2( )du1du2∫= =

I 1 φ x( )δ f( ) xd∫ φ x( ) sd
f 0=
∫= =

(u1, u2, u3)u2
u1

(u1, u2, 0)

u3 distance
from f = 0

f = 0
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The Integration of δ(f) and δ′(f) (Cont’d)

where we used ,  local mean

curvature onf = 0.

I 2 φ x( )δ′ f( ) xd∫ φ x( )δ′ u3( ) g 2( )′ du1du2du3∫= =

∂
∂u3
--------- φ x( ) g 2( )′[ ]

u3 0=
du1du2∫–=

∂φ
∂u3
---------– 2H f φ+ g 2( )du1du2∫=

∂ g 2( )′ ∂u3⁄( )
u3 0=

2H f g 2( )–= H f

I 2 φ x( )δ′ f( ) xd∫ ∂φ
∂n
------– 2H f φ+ sd

f 0=
∫= =
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n =    f

γ

g = 0

∆
n' =   g

∆

Γ

|   f| = |   g| = 1

∆ ∆

f = 0

Integration of Product of Delta Functions

Let  and  be two intersecting surfaces in 3D. We want to
integrate

Let the two surfaces intersect along the curveΓ. On local plane normal toΓ,
parametrize space by , , and , whereγ is the distance
alongΓ. Extend  and  to the space in the vicinity of the plane along local
normal to the plane.

f x( ) 0= g x( ) 0=

I φ x( )δ f( )δ g( ) xd∫=

u1 f= u2 g= u3 γ=
u1 u2
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Integration of Product of Delta Functions (Cont’d)

Then

dx
u1d u2d u3d

θsin
--------------------------- ,= θsin n n′×=

I
φ x( )

θsin
----------- δ u1( )δ u2( ) u1d u2d u3d∫ φ x( )

θsin
----------- u3d

f g 0= =
∫= =

I
φ x( )

θsin
----------- γd

f 0=
g 0=

∫=
Also if ∇f 1 or ∇g 1≠≠

I
φ x( )

∇f ∇g θsin
-------------------------------- γd

f 0=
g 0=

∫=
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n =    f
∆

∂Ω
Ω

f < 0

f = 0 : S

f > 0

Illustration of Manipulation of Generalized Functions

Let  be a vector field which is zero outsideΩ
and nonzero insideΩ.

Now integrate  over the entire 3D space. since

Similarly for  and . Now, we have

Q

∆Q Q f 0+=( ) Q f 0−=( )– Q
s

–= =

∇ Q⋅ ∇ Q⋅ ∆Q nδ f( )⋅+ ∇ Q⋅ Qnδ f( )–= =

∇ Q⋅ ∇ Q⋅ xd∫ 0=

∂Q1
∂x1
---------- x1d x2d x3d∫ Q1

x1 ∞=
Q1

x1 ∞–=
– 

  x2d x3d∫ 0= =

∂Q2 ∂x2⁄ ∂Q3 ∂x3⁄

∇ Q⋅ xd∫ ∇ Q⋅ Qnδ f( )–[ ] xd∫ ∇ Q xd⋅ Qn Sd
∂Ω
∫–

Ω
∫ 0= = =
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n =    f

∆

∂Ω

Ω
f = 0

g = n'

∆

Ag

g = 0

Illustration of Manipulation of Generalized Functions
(Cont’d)

This isthe divergence theorem. This result is valid if  is discontinuous across a
surfaceg = 0 insideΩ.

Q

∇ Q⋅ xd∫ ∇ Q⋅ ∆Q n′⋅ δ g( )+[ ] xd
Ω
∫=

∇ Q xd⋅ ∆Qn′ dS
Ag

∫+
Ω
∫= QndS

∂Ω
∫=

∇ Q xd⋅
Ω
∫ QndS

∂Ω
∫ ∆Qn′ dS

Ag

∫–=

∆Qn′ n′ Q g 0+=( ) Q g 0−=( )–[ ]⋅=
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Illustration of Manipulation of Generalized Functions
(Cont’d)

In deriving conservation laws in differential form from finite volumes involving
discontinuous functions, whenever the divergence theorem is used to convert
surface integrals into volume integrals, one should use generalized derivative.
Such conservation laws have the jump conditions incorporated in them.

Example: Shock Jump Conditions: Let the shock surface be given by

, ,  local shock normal speed,

mass continuity eq.:

Similarly for momentum and energy equations.

f x t,( ) 0= ∇f n=
∂f
∂t
-----⇒ vn–=

∂ρ
∂t
------

∂
∂xi
------- ρui( )+ 0=

∂ρ
∂t
------

∂
∂xi
------- ρui( )+ ∂ρ

∂t
------

∂
∂xi
------- ρui( ) ∆ρ∂f

∂t
-----δ f( ) ∆ ρui( ) ∂f

∂xi
-------δ f( )+ + +=

 
0= vn∆ρ– ∆ ρun( )+[ ]δ f( ) 0=

∆ ρ un vn–( )[ ]∴ 0=
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r = x – y

x

y

r

r = r/r Radiation
direction

Source

Observer

Things to Know About Green’s Function
of Wave Equation

• The Green’s function of the wave equation inthe unbounded space is

outgoing wave

source space-time variables

observer space-time variables

G y τ; x t,,( )
δ g( )
4πr
----------- τ t≤

0 τ t>





=

g τ t– r
c
--+=

y τ,( )

x t,( )
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Things to Know About Green’s Function
of Wave Equation

• There are many methods to derive  rigorously. It is easy to show
thatG depends on  and . Using , , takespatial

Fourier transform of  to get a simple problem involving

finding the Green’s function of an O.D.E. inλ. The inverse spatial Fourier
transform of the Green’s function of the O.D.E. gives Green’s function of the
wave equation for both the outgoing and incoming waves.

Useful things to remember

G y τ; x t,,( )
x y– t τ– x y– r= λ t τ–=

r λ,( )G
2 δ r( )δ λ( )=

r x y–= r, x y–= r̂, r
r
--=

∂r
∂xi
-------, r̂ i=

∂r
∂yi
-------, r̂ i–=
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(x, t)
Time

DOD(τ1)

Ω

τ1 > τ2

Ω

τ2
DOD(τ2)

Time axis

Characteristic cone (Conoid) at
(x, t).  Ω is the unbounded
3-space.  DOD is domain of
dependence of (x, t) which
depends on τ

Things to Know About Green’s Function
of Wave Equation

The support ofδ(g) is on the surfaceg = 0.
The surfaceg = 0 is .
This is thecharacteristic cone of the wave
equation with vertex at . Since  is a
differential equation with constant coefficients,
g = 0 is also thecharacteristic conoid with vertex
at . This gives us the picture on the right. Note
that we have drawn the 3D spaceΩ as a plane in the
figure. Therefore, this figure is a 3D illustration of
what happens in 4D (3D space + time).

• Note: g = 0 is a cone because if the

4-vector  lies on

 also
lies ong = 0. This is the property of a cone.

r x y– c t τ–( )= =

x t,( ) 2

x t,( )

A x y– t τ–,( )=

g 0= αA⇒ α x y–( ) α t τ–( ),[ ]=
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DOD of
(x, t) at
time τ

x

Ω:
Surface

of sphere 

c (t – τ)

Things to Know About Green’s Function
of Wave Equation

• Visualization of domain of dependence of in four dimensions.

Fix  and  is a sphere with
center at  and radius . Any source on
this sphere at timeτ, contributes to  at timet.
As τ increases, the radius shrinks, hence we
have acollapsing sphere. Radius becomes zero
at .

x t,( )

x t,( ) τ r⇒ c t τ–( )=
x c t τ–( )

x

τ t=
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The Collapsing Sphere Concept

Equation of collapsing sphere:r = c(t - τ),  fixed

TheΣ-surface is the locus ofΓ-curves in space. If the blade surface is described
by , the equation of theΣ-surface is:

,  fixed

x t,( )

Collapsing sphere
at source time τ

Observer
position x

Γ-curve

r = c (t - τ)Blade position at τ

f y τ,( ) 0=

F y x t,;( ) f y τ,( )[ ]ret f y t r c⁄–,( ) 0= = = x t,( )
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Construction of Σ-Surface for a Helicopter Rotor Blade

In this construction, we have taken a rotor blade of zero thickness rotating with
rotational Mach number 0.67 and forward Mach number 0.15. The observer is in
the rotor plane. The circles are the intersection of the collapsing sphere with the
plane containing the rotor. The circles are drawn at equal source time intervals.
The observer time ist = τ + r/c wherer is the radius of the collapsing sphere atτ.
Note thatt is fixed for the aboveΣ-surface.

VF Observer
position

Σ-surface
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n =    f

∆

∂Ω:
f = 0

Ω: f < 0

f > 0

θ
y

2φ = 0

∆x

Use of Green’s Functions for Discontinuous Solutions

Green’s function can be used to find discontinuous solutions if the derivatives in
the differential equation are treated as generalized derivatives. This adds to
usefulness of Green’s function.

Example: Green’s Identity for Laplace Equation

Let

Interior Problem

φ̃ x( ) φ x( ) xεΩ
0 xεΩ/




∇2φ̃⇒ 0 everywhere.= =

∇φ̃ ∇φ̃ ∆φ̃nδ f( )+ ∇φ̃ φnδ f( )–= =

∇2φ̃ ∇2φ̃ ∇φ nδ f( ) ∇ φnδ f( )[ ]⋅–⋅–=

∂φ
∂n
------δ f( )– ∇ φnδ f( )[ ]⋅–=
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Use of Green’s Functions for Discontinuous Solutions
(Cont’d)

Since this equation is valid in the unbounded space, we can use the Green’s

function  to get the Green’s identity

This method tells us that when ,  which is not obvious from the
classical derivation. The exterior problem is similar.

Note:  is the only term in the integrands of the above integrals which
is a function of . We assume that  is not located onS andS is piecewise
smooth. The justification for the exchange of the divergence and integral
operators follows from classical analysis.

1
4πr
---------–

4πφ̃ x( ) 1
r
--- ∂φ

∂n
------δ f( ) yd ∇x

φn
r

------δ f( ) yd∫⋅+∫=

1
r
--- ∂φ

∂n
------ Sd ∇x

φn
r

------ Sd
f 0=
∫⋅+

f 0=
∫=

φn
r

------ Sd
f 0=
∫ φ θcos

r2
--------------- Sd

f 0=
∫–=

xεΩ/ φ̃ 0=

r x y–=
x x
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The Two Forms of the Solution of Wave Equation
(Volume Sources)

We want to find the solution of

All volume integrals are over unbounded 3 space and all time integrals are over
.

i) Let  and

Integrate with respect tog to get

Retarded Time Solution

φ2 Q x t,( )=

4πφ x t,( ) 1
r
---Q y τ,( )δ g( ) yd τd∫=

∞– t,( )

τ g
∂g
∂τ
------⇒→ 1= 4πφ x t,( ) 1

r
---Q y g t

r
c
--–+, 

 δ g( ) gd yd∫=

4πφ x t,( ) 1
r
---Q y t

r
c
--–, 

  yd∫
Q[ ]ret

r
--------------- yd∫= =
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The Two Forms of the Solution of Wave Equation
(Volume Sources) (Cont’d)

ii) Let

Since in the inner integrals  andτ are fixed, then  element of

surface area of sphere . Integrate with respect tog to get:

Collapsing Sphere Solution

y3 g
∂g
∂y3
---------⇒→ 1

c
---– r̂3=

4πφ x t,( ) cQ y τ,( )
r

---------------------δ g( ) gd
dy1dy2

r̂3
------------------ τd∫=

x t,( )
dy1dy2

r̂3
------------------ dΩ=

r c t τ–( )=

4πφ x t,( ) dτ
t τ–
---------- Q y τ,( ) Ωd

r c t τ–( )=
∫∞–

t
∫=
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Derivation of the Stationary, Subsonic
and

Supersonic Kirchhoff Formulas
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n =    f

∆

Ω
2φ = 0

A moving deformable
surface

f(x, t) = 0

The Governing Wave Equation for Deriving
Kirchhoff Formulas

We considerthe exterior problem here.

: The exterior unbounded space

Let

where  is the local normal velocity onf = 0

Ω

φ̃ x t,( )
φ x t,( ) xεΩ

0 xεΩ/



φ̃2⇒ 0 everywhere= =

∂φ̃
∂t
------ ∂φ̃

∂t
------ φ∂f

∂t
-----δ f( )+ ∂φ̃

∂t
------ vnφδ f( )–= =

vn
∂f
∂t
-----–=
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The Governing Wave Equation for Deriving
Kirchhoff Formulas (Cont’d)

Next take the second time derivative of :

Similarly for the space derivatives we have:

The above results give:

φ̃

∂2φ̃
∂t2
--------- ∂2φ̃

∂t2
---------

∂φ
∂t
------ ∂f

∂t
-----δ f( ) ∂

∂t
----- vnφδ f( )[ ]–+ ∂2φ̃

∂t2
--------- vnφtδ f( ) ∂

∂t
----- vnφδ f( )[ ]––= =

∇φ̃ ∇φ̃ φnδ f( ) ∇2φ̃,+ ∇2φ̃ φnδ f( ) ∇ φnδ f( )[ ]⋅+ += =

φ̃2 1

c2
----- ∂2φ̃

∂t2
--------- ∇2φ̃– φ̃2

vnφt

c2
---------- φn+

 
 
 

δ f( )–= =

1

c2
----- ∂

∂t
----- vnφδ f( )[ ] ∇ φnδ f( )[ ]⋅––
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The Governing Wave Equation for Deriving
Kirchhoff Formulas (Cont’d)

Since , and using , we get

We now solve this wave equation for stationary, subsonic and supersonic
surfaces.

φ̃2 0= Mn vn c⁄=

φ̃2 φn
1
c
---Mnφt+ 

 – δ f( ) 1
c
--- ∂

∂t
----- Mnφ δ f( )[ ] ∇ φ n δ f( )[ ]⋅––=
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Derivation of the Classical Kirchhoff Formula

The Kirchhoff surface  is now stationary so that . The governing

wave equation is

where  andφ in the integrands are functions of . Now let , ,

and integrate with respect tog, to get

We have dealt with these integrals before. The integration of  gives

f x( ) Mn 0=

φ̃2 φnδ f( )– ∇ φnδ f( )[ ]⋅–=

4πφ̃ x t,( )
φn
r

------δ f( )δ g( ) yd τd∫– ∇x
φn
r

------δ f( )δ g( ) yd τd∫⋅–=

φn y τ,( ) τ g→ ∂g
∂τ
------ 1=

4πφ̃ x t,( )
φn y t r– c⁄,( )

r
----------------------------------δ f( ) yd∫– ∇x

φ y t r– c⁄,( )n
r

----------------------------------δ f( ) yd∫⋅–=

δ f( )

4πφ̃ x t,( ) 1
r
--- φn y t r– c⁄,( ) Sd

f 0=
∫– ∇x

n
r
--- φ y t r– c⁄,( ) Sd

f 0=
∫⋅–=
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Derivation of the Classical Kirchhoff Formula (Cont’d)

Taking the divergence operator in and using subscript ret for retarded time, we
getthe classical Kirchhoff formula

In this equation . Again, our method tells that  in the
interior of f = 0 which is not obvious from classical derivation.

Note: Only r is a function of  in the integrands of the integrals in previous
vugraph. We assume  is not onS andS is piecewise smooth. The justification for
bringing the divergence operator inside the integral follows from classical
analysis.

4πφ̃ x t,( )
c 1– φ̇ θcos φn–[ ]ret

r
----------------------------------------------- Sd

f 0=
∫ θcos

r2
------------ φ[ ]ret Sd

f 0=
∫+=

θcos n r̂⋅= φ̃ x t,( ) 0=

x
x
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Derivation of the Subsonic Kirchhoff Formula

We now assume a deformable surface moving at subsonic speed.

Governing equation:

Note that in the above equation .

φ̃2 φn c 1– Mnφt+( )– δ f( ) 1
c
--- ∂

∂t
----- Mnφδ f( )[ ] ∇ φnδ f( )[ ]⋅––=

4πφ̃ x t,( ) 1
r
--- φn c 1– Mnφτ+( )δ f( )δ g( ) yd τd∫–=

1
c
--- ∂

∂t
----- 1

r
---Mnφδ f( )δ g( ) yd τd∫–

∇x
1
r
---φnδ f( )δ g( ) yd τd∫⋅–

φτ
∂φ y τ,( )

∂τ
--------------------=
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Derivation of the Subsonic Kirchhoff Formula (Cont’d)

In the last integral, take divergence operator in. It only must operate on

which depends on. Now use the following result to write the last integral as two
integrals:

Substitute in equation for  above. We have used the rule for the exchange of
limit processes for generalized functions here.

δ g( )
r

-----------

x

∇x
δ g( )

r
----------- 1

c
--- ∂

∂t
----- r̂ δ g( )

r
--------------–

r̂ δ g( )
r2

-------------- ,–= r̂
r
r
--=

∇x
1
r
---φnδ f( )δ g( ) yd τd∫⋅ φδ f( )n∫ ∇x

δ g( )
r

----------- yd τd⋅=

1
c
--- ∂

∂t
----- 1

r
---φ θδ f( )δ g( ) yd τdcos∫–=

1

r2
-----φ θδ f( )δ g( ) yd τdcos∫–

φ̃
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Derivation of the Subsonic Kirchhoff Formula (Cont’d)

We have two kinds of integrals in the above equation

4πφ̃ x t,( ) 1
r
--- φn c 1– Mnφτ+( )δ f( )δ g( ) yd τd∫–=

1

r2
-----φ θδ f( )δ g( ) yd τdcos∫+

1
c
--- ∂

∂t
----- 1

r
--- θcos Mn–( )φδ f( )δ g( ) yd τd∫+

I 1 Q1 y τ,( )δ f( )δ g( ) yd τd∫=

I 2
1
c
--- ∂

∂t
----- Q2 y τ,( )δ f( )δ g( ) yd τd∫=
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Derivation of the Subsonic Kirchhoff Formula (Cont’d)

• Let us parametrize S:  by surface coordinates  with
domain . We assume  is time independent. This is always possible.
But , the det. of coef. of 1st fund. form is a function of timeτ. Parametrize

the space nearf = 0 by taking  and extend  along local normal

to f = 0. Now we have  (strictly speaking, we should

use  but it makes no difference here).

We use  for  in

f y τ,( ) 0= u1 u2,( )
D S( ) D S( )

g 2( )

u3 f= u1 u2,( )
dy g 2( )du1du2du3=

g 2( )′

Q1 u1 u2 u3 τ, , ,( ) Q1 y u1 u2 u3 τ, , ,( ) τ,[ ] I 1

I 1 Q1 u1 u2 u3 τ, , ,( )δ u3( )δ g( ) g 2( ) u1 u2 u3ddd τd∫=

Q1
D S( )
∫ u1 u2 0 τ, , ,( )δ g( ) g 2( ) u1 u2dd τd∞–

t∫=
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Derivation of the Subsonic Kirchhoff Formula (Cont’d)

Now let ,  because ,

,

Hereτ* is theemission time of point  onf = 0 for a fixed .

The emission timeτ* is the solution of:

τ g→ ∂g
∂τ
------ 1 Mr–= g τ t– x y u1 u2 0 τ, , ,( )– c⁄+=

M
∂y u1 u2 0 τ, , ,( )

∂τ
-------------------------------------= Mr M r̂⋅ ⇒=

I 1

Q1 g 2( )
1 Mr–

----------------------
τ*

u1d u2d
D S( )
∫=

u1 u2,( ) x t,( )

τ* t x y u1 u2 0 τ*, , ,( )– c⁄+– 0=
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Derivation of the Subsonic Kirchhoff Formula (Cont’d)

Similar procedure for  gives

We note that  so that . From the equation

for emission time .

I 2

I 2
1
c
--- ∂

∂t
-----

D S( )
∫

Q2 g 2( )
1 Mr–

----------------------
 
 
 

τ*
u1d u2d=

I 2
1
c
--- 1

1 Mr–
---------------- ∂

∂τ
-----

Q2 g 2( )
1 Mr–

----------------------
 
 
 

τ*
u1d u2d

D S( )
∫=

τ* τ* u1 u2; x t,,( )= ∂
∂t
-----

x

∂τ*
∂t

--------- ∂
∂τ*
---------=

∂τ*
∂t

--------- 1
1 Mr–
----------------=
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Derivation of the Subsonic Kirchhoff Formula (Cont’d)

From the results for  and , we getI 1 I 2

4πφ̃ x t,( )
φn c 1– Mnφτ+( ) g 2( )

r 1 Mr–( )
-------------------------------------------------------

τ*
u1d u2d

D S( )
∫–=

φ g 2( ) θcos

r2 1 Mr–( )
------------------------------

τ*

u1d u2d
D S( )
∫+

1
c
--- 1

1 Mr–
---------------- ∂

∂τ
-----

θcos Mn–( )φ g 2( )
r 1 Mr–( )

-------------------------------------------------
 
 
 

τ*
u1d u2d

D S( )
∫+
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Derivation of the Subsonic Kirchhoff Formula (Cont’d)

• This result was originally derived by W. R. Morgans (Phil. Mag., vol. 9, 1930,
141–161). It was rederived by Farassat and Myers using the above method
(JSV, vol. 123(3), 1988, 451–460). These authors have given a useful formula
for applications in the following form

where  and  are long expressions given in the above reference. This

formula was verified by using analytic input for rigid surfaces.

• Note: The above Kirchhoff formula has a Doppler singularity in the
denominator for supersonic surfaces. This makes the above result unsuitable
for a supersonic surface. However, the supersonic Kirchhoff formula is
inherently less efficient on a computer. We prefer to use the above formula for
any panel on the Kirchhoff surface without the Doppler singularity.

4πφ̃ x t,( )
E1 g 2( )
r 1 Mr–( )
------------------------

τ*
u1d u2d

D S( )
∫

φE2 g 2( )
r2 1 Mr–( )
---------------------------

τ*

u1d u2d
D S( )
∫+=

E1 E2
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A Simple Trick in Preparation for Supersonic
Kirchhoff Formula

To reduce algebraic manipulations and to obtain the simplest form of the
supersonic Kirchhoff formula, we introduce the following trick. Note that in the
governing wave equation for deriving Kirchhoff formula, we have terms

involving time and space derivatives:  and . We need

to take these derivatives explicitly. We propose the following simplification of
this process.

Observation:  take derivatives of both sides
. It is obvious that the right side is simpler

than the left side. What is so special about ? Here  isrestricted to
the support of the delta function, i.e.,x = 0. Can restriction of  to the support
of  in  reduce manipulations when we take derivatives of

? The answer is yes!

∂
∂t
----- Mnφδ f( )[ ] ∇ φnδ f( )[ ]⋅

φ x( )δ x( ) φ 0( )δ x( )=
φ′ x( )δ x( ) φ x( )δ′ x( )+ φ 0( )δ′ x( )=

φ 0( )δ x( ) φ x( )
φ x( )

δ f( ) φ x( )δ f( )
φ x( )δ f( )
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A Simple Trick in Preparation for Supersonic
Kirchhoff Formula (Cont’d)

We use the notation  for restriction of  to the support of .

Using the local parametrization of space nearf = 0 (  onf = 0,

), we have

Similarly , note  we have

See NASA TP-3428 for some more explanation. In manipulation of term
involving derivatives of the product of a delta function and an ordinary function,
always restrict the ordinary function to the support of the delta function.

˜
φ x( ) φ x( ) δ f( )

u1 u2,( )
u3 distance fromf 0= =

˜
φ x( ) φ u1 u2 0, ,( )=

˜
φ x t,( ) φ u1 u2 0 t, , ,( )= ui ui x t,( )=

φ x t,( )δ f( )
˜
φ x t,( )δ f( )=
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A Simple Trick in Preparation for Supersonic
Kirchhoff Formula (Cont’d)

(A)

(B)

where  is the surface gradient of . As expected, the integration of the right

side of (A) is algebraically somewhat more complicated than integration of the
right side of (B).

• Note that , ,

Note: Wave propagation literature use  for  and  for .

∇ φ x t,( )δ f( )[ ] ∇φδ f( ) φ∇f δ′ f( )+=

˜
∇ φ x t,( )δ f( )[ ] ∇2φδ f( ) φ∇f δ′ f( )

˜ ˜
+=

∇2φ
˜ ˜

φ

˜
∂φ
∂xi
------- ∂φ

∂xi
------- ni

∂φ
∂n
------–= ˜

∂φ
∂n
------ 0= ˜

∂φ
∂t
------ ∂φ

∂t
------ vn

∂φ
∂n
------+=

δφ
δxi
------- ˜

∂φ
∂xi
------- δφ

δt
------ ˜

∂φ
∂t
------
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A panel

f = f = 0
~

|ν| = 1ν

f = 0

f > 0
~

ν the unit geodesic normal

Derivation of the Supersonic Kirchhoff Formula

We are now interested to develop the supersonic Kirchhoff formula for a panel on
the Kirchhoff surface. This is only because of practical consideration. On the
surface , we define a panel by its edge

curve  such that  on the panel and

 the local unit geodesic normal at the edge

. The geodesic normal is tangent to the
panel and normal to the edge. Denoting Heaviside

function by , our governing differential equation
for finding the Kirchhoff formulafor the panel is

f x t,( ) 0=

f̃ 0= f̃ 0>
∇ f̃ ν=

f f̃ 0= =

H f̃( )

φ2 φn c 1– Mnφt+( )– H f̃( )δ f( ) 1
c
--- ∂

∂t
----- MnφH f̃( )δ f( )[ ]–=

∇ φnH f̃( )δ f( )[ ]⋅–
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Derivation of the Supersonic Kirchhoff Formula
(Cont’d)

where  is the local Mach number of the edge in the direction of .
Using the divergence result derived earlier, we have

where  is the local mean curvature off = 0.

1
c
--- ∂

∂t
----- MnφH f̃( )δ f( )[ ] 1

c
--- ∂

∂t
----- Mnφ( )H f̃( )δ f( ) MnMνφδ f̃( )δ f( )

˜ ˜
–=

Mn
2φH f̃( )δ′ f( )

˜ ˜
–

Mν M ν⋅= ν

∇ φnH f̃( )δ f( )[ ]⋅ 2H f φH f̃( )δ f( )– φH f̃( )δ′ f( )
˜

+=

H f
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Derivation of the Supersonic Kirchhoff Formula
(Cont’d)

The governing equation for deriving the supersonic Kirchhoff formulafor a
panel is

We see that we have three kinds of sources which we will treat below.

• Note: The solution of wave equation with sources of the type in the above
equation is given in detail in NASA Technical Paper 3428, May 1994, by
F. Farassat.

φ̃2 φn c 1– Mnφt c 1– Mnφ( )
t

2H f φ–+ +[ ]– H f̃( )δ f( )
˜ ˜

=

1 Mn
2–( )φH f̃( )δ′ f( )– MnMνφδ f̃( )δ f( )

˜ ˜
+

q1H f̃( )δ f( ) q2H f̃( )δ′ f( ) q3δ f̃( )δ f( )
˜

+ +≡
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Derivation of the Supersonic Kirchhoff Formula
(Cont’d)

Let  where ’s are solutions of wave equation with sources

involving .

i) Solution of [Eq. (4.23b), NASA TP-3428]

Let , , integrate with respect tog

φ̃ φ1 φ2 φ3+ += φi
qi i 1 3–=( )

φ1
2 q1H f̃( )δ f( )= φ2

2 q2H f̃( )δ′ f( )= φ3
2 q3δ f( )δ f̃( )

˜
=, ,

φ1
2 q1H f̃( )δ f( )=

4πφ1 x t,( )
q1 y τ,( )

r
-------------------H f̃( )δ f( )δ g( ) yd τd∫=

τ g→ ∂g
∂τ
------ 1=

4πφ1 x t,( )
q1[ ]

ret
r

----------------H F̃( )δ F( ) yd∫=
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Derivation of the Supersonic Kirchhoff Formula
(Cont’d)

Here  and

We have treated integrals of this type before. We write the element of surface
area ofF = 0 bydΣ. TheΣ-surface was explained earlier.

F y; x t,( ) f y τ,( )[ ]ret f y t r– c⁄,( )= =

F̃ y; x t,( ) f̃ y τ,( )[ ]ret f̃ y t r– c⁄,( )= =

4πφ1 x t,( )
q1[ ]

ret
rΛ

---------------- Σd
F 0=
F̃ 0>

∫=

Λ2 ∇F 2 1 Mn
2 2Mn θcos–+= = θcos n r̂⋅=
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Derivation of the Supersonic Kirchhoff Formula
(Cont’d)

ii) Solution of [Eq. (4.23e), NASA TP-3428]

Let , , integrate with respect tog

The interpretation of integrals involving derivatives of delta functions was
given before. Note that we get a line integral on  because

φ2
2 q2H f̃( )δ′ f( )

˜
=

4πφ2 x t,( )
q2
r

-----H f̃( )δ′ f( )δ g( ) yd τ˜ d∫=

τ g→ ∂g
∂τ
------ 1=

4πφ2 x t,( )
q2[ ]

ret
r

----------------H F̃( )δ′ F( ) y˜ d∫=

F F̃ 0= =

∂
∂N
------- H F̃( ) N ∇F̃ δ F̃( )⋅=
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Derivation of the Supersonic Kirchhoff Formula
(Cont’d)

, ,

, ,

,  mean curvature ofΣ-surface

4πφ2 x t,( ) 1
Λ
---- ∂

∂N
-------

q2[ ]
ret

rΛ
----------------

2HF q2[ ]
ret

r Λ2
----------------------------+–

 
 
 

Σ˜˜ d
F 0=
F̃ 0>

∫=

q2[ ]
ret

θ′cot

r Λ2
------------------------------ L˜ d

F 0=
F̃ 0=

∫–

N
∇F
∇F
-----------

n Mnr̂–

Λ
--------------------= = Ñ

∇F̃

∇F̃
-----------

ν Mν r̂–

Λ̃
--------------------= =

Λ̃2 ∇F̃ 2 1 Mν
2 2Mν θ̃cos–+= = θ̃cos ν r̂⋅=

θ′cos N Ñ⋅= HF
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Derivation of the Supersonic Kirchhoff Formula
(Cont’d)

iii) Solution of [Eq. (4.23f), NASA TP-3428]

The interpretation of this integral was given before.

where ,

φ3
2 q3δ f̃( )δ f( )=

4πφ3 x t,( )
q3
r

----- δ f̃( )δ f( )δ g( ) yd τd∫=

1
r
--- q3[ ]

ret
δ F̃( )δ F( ) yd∫=

4πφ3 x t,( ) 1
r
---

q3[ ]
ret

Λ0
---------------- Ld

F 0=
F̃ 0=

∫=

Λ0 ∇F ∇F̃× ΛΛ̃ θ′sin= = θ′cos N Ñ⋅=
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Derivation of the Supersonic Kirchhoff Formula
(Cont’d)

Now putting the solutions for , , and  together in , we get the
supersonic Kirchhoff formula

where

This equation was derived by Farassat and Myers in 1994. It was presented at
ASME Int. Mech. Eng. Congress and Expo., Nov. 6–11, 1994, Chicago, Illinois.
It was also published with improved derivation as a paper at the First Joint
CEAS/AIAA Aeroacoustics Conference, June 12–15, 1995, Munich, Germany.

φ1 φ2 φ3 φ̃

4πφ̃ x t,( ) 1
rΛ
------ Q1

2HF

Λ
-----------Q2

N ∇Λ⋅
Λ2

-----------------Q2

N ∇Q2⋅
Λ

--------------------–+ + Σ˜ d
F 0=
F̃ 0>

∫=

N ∇r⋅
r 2Λ2

----------------Q2 Σd
F 0=
F̃ 0>

∫
1

r Λ0
--------- Q3

Λ̃ θ′cos
Λ

------------------Q2– Ld
F 0=
F̃ 0=

∫+ +

Qi qi[ ]
ret

i, 1 3–= =



91 of 95, September 1996

F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division

NASA Langley Research Center
Hampton, Virginia

The Mean Curvature HF of Σ-Surface (f = 0 Rigid)

, , , ,

, (  and  are projections of  and  on

local tangent plane tof = 0),  and  local principal curvatures off = 0,

local normal curvature off = 0 along ,  local mean curvature off = 0,

,  angular velocity, , ,

,  and  components of  and  in principal

directions with respect to unit basis vectors, respectively.

HF

Mn

rΛ
-------- 1 sin2θ

2Λ2
-------------– 

  1 Mr–( )2

Λ3
------------------------ H f

1 Mr–

Λ3
---------------- r̂ t q κ1λ̃1γ̃ 1 κ2λ̃2γ̃ 2+ +⋅( )+ +–=

sin2θ
2Λ3
------------- 1

c
---Ṁn M2κγ+ 

  1

Λ3
------ γ q⋅( ) λ r̂ t⋅( )+ +

Λ 1 Mn
2 2Mn θcos–+( )1 2⁄= θcos n r̂⋅= r̂

x y–
r

-----------= M M=

r̂ t r̂ n θcos–= Mt M Mnn–= r̂ t Mt r̂ M

κ1 κ2 κγ
γ H f

q
1
c
---n ω×= ω γ n r̂t×= λ n Mt×=

Ṁn n Ṁ⋅= λ̃1 λ̃2,( ) γ̃1 γ̃2,( ) λ γ
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Selection of the Kirchhoff Surface for Supersonic
Kirchhoff Formula

It can be shown that when the collapsing sphere leaves the Kirchhoff surfacef = 0
tangentially at a point whereMn = 1, the supersonic Kirchhoff formula will
develop a singularity. One can solve this problem by selecting a biconvex shape
for Kirchhoff surface avoiding the above singularity condition. In rotor noise
calculations, in-plane noise of high speed rotors is the most important. Reasonable
shape of Kirchhoff surface is possible. Farassat and Myers have shown that the
singularity from line integral in Kirchhoff formula is integrable. (See paper in
Theoretical and Computational Acoustics, vol. 1, D. Lee et al. (eds), 1994, World
Scientific Publishing.)

Sharp

Sharp

Supersonic Kirchhoff
surface
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References for Differential Geometry

Most of the results on differential geometry in previous pages were known by the
end of the 19th century. The contribution of 20th century mathematicians has
been development of general and powerful techniques to solve difficult problems
but written in a supposedly rigorous style making differential geometry
inaccessible to engineers. Here are a few useful books.

1. Dirk J. Struik: Lectures on Classical Differential Geometry, 2nd ed., Dover
Books, 1988.

2. Erwin Kreyszig: Differential Geometry, Dover Books, 1991.

3. A. J. McConnell: Applications of Tensor Analysis, Dover Books, 1957.

4. R. Aris: Vectors, Tensors, and the Basic Equations of Fluid Mechanics,
Dover Books, 1989.



94 of 95, September 1996

F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division

NASA Langley Research Center
Hampton, Virginia

References for Generalized Functions

1. M. J. Lighthill: Introduction to Fourier Analysis and Generalized Functions,
Camb. Univ. Press, 1964. (Generalized functions of one variable, sequential
approach, excellent book!)

2. D. S. Jones:The Theory of Generalized Functions, 2nd ed., Camb. Univ.
Press, 1982. (Multivariable generalized functions, sequential approach,
highly technical, full of useful results.)

3. I. M. Gel’fand and G. E. Shilov:Generalized Functions, Vol. 1,Properties
and Operations, Academic Press, 1964. (Probably the best book ever written
on generalized functions, highly readable, full of useful results.)

4. R. P. Kanwal:Generalized Functions—Theory and Technique, Academic
Press, 1983. (Highly readable but also advanced.)

5. R. S. Strichartz:A Guide to Distribution Theory and Fourier Transforms,
CRC Press, 1994. (Masterful expository book.)

6. F. Farassat:Introduction to Generalized Functions With Applications in
Aerodynamics and Aeroacoustics, NASA TP-3428, May 1994 (corrected
April 1996). (The main reference for this workshop.)
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